
Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 1 

 

 

UNIT II: Android Studio and User Interface Design 

2.1 Android Studio and its Features 

2.2 Introduction to Activities and Activity Lifecycle 
2.3 Working with the AndroidManifest.xml 

2.4 Using the log system 

2.5 Views and View Groups 
2.6 Linear Layout, Relative Layout, 

2.7 TableLayout, Constraint Layout, Frame Layout, Scroll Layout, Scroll View  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 2 

 

 

2.1 Android Studio and its Features 

Android Studio is Android's official IDE. It is purpose-built for Android to 
accelerate your development and help you build the highest-quality apps for 
every Android device. 

 

Android Studio was announced on 16th May 2013 at the Google I/O conference 
as an official IDE for Android app development. It started its early access preview 
from version 0.1 in May 2013. The first stable built version was released in 
December 2014, starts from version 1.0. 

 

Features of Android Studio 
 

It has a flexible Gradle-based build system. 
 
It has a fast and feature-rich emulator for app testing. 
 
Android Studio has a consolidated environment where we can develop for all 
Android devices. 
 
Apply changes to the resource code of our running app without restarting the 
app. 
 
Android Studio provides extensive testing tools and frameworks. 
 

 
 
 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 3 

 

 

2.2 Introduction to Activities and Activity Lifecycle 

 

An activity represents a single screen with a user interface just like window or 
frame of Java.Android activity is the subclass of ContextThemeWrapper class. 

By the help of activity, you can place all your UI components or widgets in a single 
screen. 

The 7 lifecycle method of Activity describes how activity will behave at different 
states. 

 

1. onCreate : called when activity is first created. 

2. onStart : called when activity is becoming visible to the user. 

3. onResume : called when activity will start interacting with the user. 

4. onPause : called when activity is not visible to the user. 

5. onStop : called when activity is no longer visible to the user. 

6. onRestart : called after your activity is stopped, prior to start. 

7. onDestroy : called before the activity is destroyed. 

 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 4 

 

 

2.3 Working with the AndroidManifest.xml 
 
The AndroidManifest.xml file contains information of your package, including 
components of the application such as activities, services, broadcast receivers, 
content providers etc. 

o It is responsible to protect the application to access any protected parts 

by providing the permissions. 

o It also declares the android api that the application is going to use. 

o It lists the instrumentation classes. The instrumentation classes 

provides profiling and other informations. These informations are 

removed just before the application is published etc. 

This is the required xml file for all the android application and located inside the 
root directory. 

Elements of the AndroidManifest.xml file 

The elements used in the above xml file are described below. 

1. <manifest> 

manifest is the root element of the AndroidManifest.xml file. It 
has package attribute that describes the package name of the activity class. 

2. <application> 

application is the subelement of the manifest. It includes the namespace 
declaration. This element contains several subelements that declares the 
application component such as activity etc. 

The commonly used attributes are of this element are icon, label, theme etc. 

android:icon represents the icon for all the android application components. 

android:label works as the default label for all the application components. 

android:theme represents a common theme for all the android activities. 

3. <activity> 

activity is the subelement of application and represents an activity that must be 
defined in the AndroidManifest.xml file. It has many attributes such as label, 
name, theme, launchMode etc. 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 5 

 

 

android:label represents a label i.e. displayed on the screen. 

android:name represents a name for the activity class. It is required attribute. 

4. <intent-filter> 

intent-filter is the sub-element of activity that describes the type of intent to 
which activity, service or broadcast receiver can respond to. 

4.1 <action> 

It adds an action for the intent-filter. The intent-filter must have at least one 
action element. 

4.2 <category> 

It adds a category name to an intent-filter. 

<manifest> 
   <application> 
<activity android:name=".MainActivity" > 
      </activity> 
   </application> 
</manifest> 
5. <uses-permission>: This element specifies the Android Manifest 
permissions that are requested for the purpose of security. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 6 

 

 

2.4 Using the log system 

The Android system uses a centralized system for all logs. The application 
programmer can also write custom log messages. The tooling to develop 
Android applications allows you to define filters for the log statements you are 
interested in. 

1.2. Create log statements 

To write log statements, you use use the android.util.Log class with the following 
methods: 

Log.e(String, String) (error) 

Log.w(String, String) (warning) 

Log.i(String, String) (information) 

Log.d(String, String) (debug) 

Log.v(String, String) (verbose) 

The priority is one of the following values: 

 V: Verbose (lowest priority) 

 D: Debug 

 I: Info 

 W: Warning 

 E: Error 

 A: Assert 

Verbose: Show all log messages (the default). 

Debug: Show debug log messages that are useful during development only, 
as well as the message levels lower in this list. 

Info: Show expected log messages for regular usage, as well as the message 
levels lower in this list. 

Warn: Show possible issues that are not yet errors, as well as the message 
levels lower in this list. 

Error: Show issues that have caused errors, as well as the message level 
lower in this list. 

Assert: Show issues that the developer expects should never happen. 

https://www.vogella.com/tutorials/AndroidLogging/article.html#create-log-statements


Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 7 

 

 

2.5 Views and View Groups 

 
View 
The View class is the base class or we can say that it is the superclass for all 
the GUI components in android. For example, the EditText class is used to 
accept the input from users in android apps, which is a subclass of View, and 
another example of the TextView class which is used to display text labels in 
Android apps is also a subclass of View.  
Or the other definition, 

View refer to the android.view.View class, which is the base class of all UI 
classes. android.view.View class is the root of the UI class hierarchy. So from 
an object point of view, all UI objects are View objects. Following are some of 
the common View subclasses that will be used in android applications. 
 TextView 
 EditText 
 ImageView 
 RadioButton 
 Button 
 CheckBox 
 DatePicker 
 Spinner 

 
These are some of the view subclass available in android.  

ViewGroup 
 

The ViewGroup class is a subclass of the View class. And also it will act as a 
base class for layouts and layouts parameters.  The ViewGroup will provide an 
invisible container to hold other Views or ViewGroups and to define the layout 
properties. For example, Linear Layout is the ViewGroup that contains UI 
controls like Button, TextView, etc., and other layouts also. ViewGroup Refer 
to the android.view.ViewGroup class, which is the base class of some special 
UI classes that can contain other View objects as children. Since ViewGroup 
objects are also View objects, multiple ViewGroup objects and View objects 
can be organized into an object tree to build a complex UI structure. Following 
are the commonly used ViewGroup subclasses used in android applications. 
 FrameLayout 
 WebView 
 ListView 
 GridView 
 LinearLayout 
 RelativeLayout 
 TableLayout 

https://www.geeksforgeeks.org/working-with-the-textview-in-android/


Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 8 

 

 

2.6 Linear Layout, Relative Layout 
 
Linear Layout 
 
LinearLayout is the most basic layout in android studio, that aligns all the 
children sequentially either in a horizontal manner or a vertical manner by 
specifying the android:orientation attribute.  
 
If one applies android:orientation=”vertical” then elements will be arranged 
one after another in a vertical manner and  
 
If you apply android:orientation=”horizontal” then elements will be 
arranged one after another in a horizontal manner. 
 
<? xml version="1.0" encoding="utf-8"?> 
<LinearLayout  
    xmlns:android="http://schemas.android.com/apk/res/android" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    android:orientation="vertical"> 
 
</LinearLayout> 

android:id 

This is the ID which uniquely identifies the layout. 

android:Layout_Gravity 

This specifies how a control should position its content, on both the X and Y 
axes. Possible values are top, bottom, left, right, center 

android:gravity 

This specifies how a text should position its content, on both the X and Y axes. 
Possible values are top, bottom, left, right, center, center_vertical, 
center_horizontal etc.  

android:orientation 

This specifies the direction of arrangement and you will use "horizontal" for a 
row, "vertical" for a column. The default is horizontal. 

android:weightSum 

Sum up of child weight 

android:LayoutWeight 

It is use for Divide the weight sum according to the design. 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 9 

 

 

Relative Layout 

Android RelativeLayout enables you to specify how child views are positioned 
relative to each other. The position of each view can be specified as relative to 
sibling elements or relative to the parent. 

 

android:layout_alignParentBottom. 

If true, makes the bottom edge of this view match the bottom edge of the parent. 
Must be a boolean value, either "true" or "false". 

 

android:layout_alignParentRight 

If true, makes the right edge of this view match the right edge of the parent. Must 
be a boolean value, either "true" or "false". 

android:layout_centerHorizontal 

If true, centers this child horizontally within its parent. Must be a boolean value, 
either "true" or "false". 

android:layout_centerVertical 

If true, centers this child vertically within its parent. Must be a boolean value, 
either "true" or "false". 

android:layout_centerInParent 

If true, centers this child horizontally and vertically within its parent. Must be a 
boolean value, either "true" or "false". 

 

android:layout_above 

Positions the bottom edge of this view above the given anchor view ID and must 
be a reference to another resource, in the form  

 

android:layout_above=”@id/text” 

 

android:layout_below 

Positions the top edge of this view below the given anchor view ID and must be 
a reference to another resource 

android:layout_below=”@id/text” 

 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 10 

 

 

android:layout_toLeftOf 

Positions the right edge of this view to the left of the given anchor view ID and 
must be a reference to another resource 

android:layout_ toLeftOf=”@id/text” 

 

android:layout_toRightOf 

Positions the left edge of this view to the right of the given anchor view ID and 
must be a reference to another resource 

android:layout_ toRightOf=”@id/text” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 11 

 

 

Table Layout 

Android Table Layout going to be arranged groups of views into rows and 
columns. You will use the <TableRow> element to build a row in the table. Each 
row has zero or more cells; each cell can hold one View object. 

 

android:id 

This is the ID which uniquely identifies the layout. 

android:collapseColumns 

Collapse columns attribute is used to collapse or invisible the columns of a table 
layout. These columns are the part of the table information but are invisible. 

If the values is 0 then the first column appears collapsed, i.e. it is the part of table 
but it is invisible. 

android:shrinkColumns 

Shrink column attribute is used to shrink or reduce the width of the column‘s. We 
can specify either a single column or a comma delimited list of column numbers 
for this attribute. The content in the specified columns word-wraps to reduce 
their width. 

If the value is 0 then the first column’s width shrinks or reduces by word 
wrapping its content. 

If the value is 0, 1 then both first and second columns are shrinks or reduced by 
word wrapping its content. 

If the value is ‘*’ then the content of all columns is word wrapped to shrink their 
widths. 

android:stretchColumns 

Stretch column attribute is used in Table Layout to change the default width of a 
column which is set equal to the width of the widest column but we can also 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 12 

 

 

stretch the columns to take up available free space by using this attribute. The 
value that assigned to this attribute can be a single column number or a comma 
delimited list of column numbers (1, 2, and 3…n). 

If the value is 1 then the second column is stretched to take up any available space 
in the row, because of the column numbers are started from 0. 

If the value is 0, 1 then both the first and second columns of table are stretched 
to take up the available space in the row. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 13 

 

 

Constraint Layout 

 
Advantages of using ConstraintLayout in Android 
 
 

 ConstraintLayout provides you the ability to completely design your UI 
with the drag and drop feature provided by the Android Studio design 
editor. 

 It helps to improve the UI performance over other layouts. 
 With the help of ConstraintLayout, we can control the group of widgets 

through a single line of code. 
 With the help of ConstraintLayout, we can easily add animations to the UI 

components which we used in our app. 
 
Disadvantages of using ConstraintLayout  
 When we use the Constraint Layout in our app, the XML code generated 

becomes a bit difficult to understand. 
 In most of the cases, the result obtain will not be the same as we got to see 

in the design editor. 
 Sometimes we have to create a separate layout file for handling the UI for 

the landscape mode. 

android:id 

This is used to give a unique id to the layout.  

app:layout_constraintBottom_toBottomOf 

This is used to constrain the view with respect to the bottom position. 

app:layout_constraintLeft_toLeftOf 

This attribute is used to constrain the view with respect to the left position. 

app:layout_constraintRight_toRightOf 

This attribute is used to constrain the view with respect to the right position.  

app:layout_constraintTop_toTopOf 

This attribute is used to constrain the view with respect to the top position. 
 
 
 
 
 
 
 
 
 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 14 

 

 

Frame Layout 
 
Android Framelayout is a ViewGroup subclass that is used to specify the position 
of multiple views placed on top of each other to represent a single view screen. 
 
Syntax: 
 
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    android:orientation="vertical"> 
 
    // Add items or widgets here 
</FrameLayout> 
 
Scroll Layout 
 
ScrollView is a kind of layout that is useful to add vertical or horizontal scroll bars 
to the content which is larger than the actual size of layouts such as linearlayout, 
relativelayout, framelayout. 
 
The ScrollView will enable a scroll to the content which is exceeding the screen 
layout and allow users to see the complete content by scrolling. 
 
ScrollView supports only vertical scrolling. 
 
 

1. Scroll View 
 
<?xml version="1.0" encoding="utf-8"?> 
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android" 
    android:layout_width="match_parent" 
    android:layout_height="wrap_content" 
    android:fillViewport="false"> 
 
 
</ScrollView> 
 
 
 
 
 
 



Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit II Android Studio and User Interface Design 

 Prepared by: Mr. G. P. Shinde, COCSIT Latur          Page 15 

 

 

2. HorizontalScrollView 
 
Horizontal ScrollView is a FrameLayout, used to provide the child View element 
horizontal scrolling property. 
 
The ChildView in itself can be a layout manager like the linear layout. The 
TextView class takes care of its own scrolling, But it can be placed inside a 
HorizontalScrollView to create more complex UI designs. 
 
Syntax: 
 
<HorizontalScrollView 
        android:id="@+id/horizontalScrollView" 
        android:layout_width="match_parent" 
        android:layout_height="match_parent" 
       android:foregroundGravity="center_vertical"> 
 
 
</HorizontalScrollView> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thank You 


